

UNIVERSIDADE FEDERAL DE UBERLÂNDIA ESCOLA TÉCNICA DE SAÚDE COLEGIADO DO CURSO TÉCNICO EM CONTROLE AMBIENTAL PLANO DE ENSINO

1. IDENTIFICAÇÃO

COMPONENTE CURRICULAR: ANÁLISE INSTRUMENTAL PRÁTICA							
CÓDIGO :	ESTES23052	PERÍODO/SÉRIE: 4º SEMESTRE		TURMA: TCA – Turma B			
NATUREZA: OBRIGATÓRIA							
CARGA HORÁRIA: 60h							
TEÓRICA:	00h	PRÁTICA: 60h	TOTAL: 60h				
PROFESSO	R: DOUGLAS QUEII	ROZ SANTOS	ANO/SEMESTRE: 2023	3/2			

2. EMENTA

Noções de operações básicas de laboratório. Fundamentos dos métodos ópticos. Fundamentos das técnicas de espectroscopia de absorção molecular e fotometria de chama. Introdução aos métodos cromatográficos.

3. JUSTIFICATIVA

Na formação de Técnico em Controle Ambiental é necessário que ele tenha conhecimento químico, haja visto que, a qualidade das águas, solo e ar são avaliadas por parâmetros físico-químicos. Desta maneira, é importante que este profissional adquira habilidades para o trabalho em laboratórios que envolvam as análises físico-químicas. Assim, esta disciplina tem como fundamental importância a participação em laboratório para adquirir as noções básicas de segurança, operações básicas de laboratório, utilização de vidrarias, preparar e padronizar soluções.

Dafa Quing Santo

4. OBJETIVO

Capacitar os alunos do Curso Técnico em Controle Ambiental para as atividades laboratoriais relacionadas ao uso dos equipamentos e suas funções. Desenvolver a capacidade de discutir, analisar, interpretar e avaliar métodos instrumentais para identificação e quantificação de elementos, substâncias moleculares e íons inorgânicos e orgânicos de interesse ambiental.

5. PROGRAMA

Obtenção e interpretação de espectros de absorção iônica e molecular; - Aplicação da Lei de Beer; - Desvios da Lei de Beer; - Cromatografia para identificação de substâncias tóxicas em solo e água

6. METODOLOGIA

Aula	DATA	CONTEÚDO	
1	12/01	Recepção dos alunos	
2	19/01	Apresentação Plano de Ensino e Metodologias	
3	26/01	Experimento I	
4	02/02	Experimento II	
5	09/02	Experimento III	
6	16/02	1ª Avaliação Individual	
7	23/02	Vista da Avaliação 1º	
8	01/03	Experimento IV	
9	08/03	Experimento V	

Dafa Quing Santo

10	15/03	Experimento VI
11	22/03	2ª Avaliação Individual
12	05/04	Vista da Avaliação 2º
13	12/04	Experimento VII
14	19/04	Experimento VIII
15	26/04	3ª Avaliação Individual

7. AVALIAÇÃO

1º Avaliação: 100 pontos

2º Avaliação: 100 pontos

3º Avaliação: 100 pontos

Atividades: 100 pontos

A nota final será a média.

Dofa Quiry Santo

8. BIBLIOGRAFIA

Básica

Bibliografia

BAIRD, C. Química ambiental. 4. ed. São Paulo: Bookman, 2011.

HARRIS, D. C. Análise química quantitativa. 8. ed. Rio de Janeiro: LTC, 2012.

SKOOG, D. A.; LEARY, J. J. Princípios de análise instrumental. 6. ed. Porto Alegre: Bookman 2009.

Complementar

Bibliografia

ATKINS, P.W.; JONES, L. Princípios de química: questionando a vida moderna e o meio ambiente. 5. ed. Porto Alegre: Bookman, 2012.

COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. (Org.). Fundamentos de cromatografía. Campinas: Ed. da UNICAMP, 2006.

OHLWEILER, O. A. Fundamentos de análise instrumental. Rio de Janeiro: LTC, 1981.

ROCHA, J. C.; ROSA, A. H.; CARDOSO, A. A. Introdução à química ambiental. Porto Alegre: Bookman, 2009.

SKOOG, D. A. et al. Fundamentos de química analítica. São Paulo: Cengage Learning, 2015.

9. APROVAÇÃO

Assinatura do Docente Responsável

Doffer Church Santo

Laucas Coixata Contino
Assinatura do Coordenador do Curso