|
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Av. João Naves de Àvila, 2121, Bloco 1F - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902 |
|
Plano de Ensino
IDENTIFICAÇÃO
Componente Curricular: |
|||||||||
Unidade Ofertante: |
|||||||||
Código: |
Período/Série: |
Turma: |
|||||||
Carga Horária: |
Natureza: |
||||||||
Teórica: |
Prática: |
Total: |
Obrigatória: |
Optativa: |
|||||
Professor(A): |
Ano/Semestre: |
||||||||
Observações: |
EMENTA
Vetores no plano e no espaço; Retas no plano e no espaço; Planos; Posições relativas entre retas; Posições relativas entre retas e planos; Posições relativas entre planos; Distâncias e ângulos; Coordenadas Polares; Cônicas; Superfícies Quádricas; Geração de Superfícies
JUSTIFICATIVA
A disciplina trabalha com tópicos fundamentais da Matemática, como vetores e distâncias, para que o aluno tenha a oportunidade de aprender vários assuntos que farão parte também de outras disciplinas que utilizam a Matemática como ferramenta. É fundamental que o aluno compreenda situações práticas e saiba organizar as suas ideias para modelar matematicamente os problemas e, assim, interpretar os resultados obtidos.
OBJETIVO
Objetivo Geral: |
Familiarizar o estudante ao uso da álgebra de vetores para o estudo da Geometria Plana e Espacial e suas aplicações na modelagem de problemas geométricos e físicos. |
Objetivos Específicos: |
Desenvolver atividades de resolução de situações problema em geometria, onde a utilização da álgebra seja um meio privilegiado de solução, como também um elemento integrador entre o estudo da Geometria e da Álgebra. Desenvolver atividades que estimulem o entendimento dos tópicos e a contextualização e interdisciplinaridade dos conteúdos de geometria estudados na disciplina. |
PROGRAMA
1. Vetores
1.1. Segmentos orientados e vetores
1.2. Adição e multiplicação por escalar e propriedades - abordagem geométrica
1.3. O Sistema de Coordenadas Cartesianas Ortogonais no plano e no espaço
1.4. Operações de adição e multiplicação por escalar e propriedades - abordagem geométrica
1.5. Norma (ou módulo) de vetor e distância entre dois pontos no espaço cartesiano.
1.6. Produto interno (ou escalar) e ângulo entre vetores
1.7. Propriedades do produto interno, desigualdades e projeções ortogonais
1.8. Produto vetorial e significado geométrico de sua norma
1.9. Produto misto e significado geométrico de seu módulo.
2. Retas, Planos e Distâncias
2.1. Equação vetorial, equações paramétricas, equações simétricas e equações reduzidas de uma reta no espaço cartesiano
2.2. Determinação da intersecção de duas retas
2.3. Ângulo entre duas retas
2.4. Posições relativas entre duas retas
2.5. Distância de ponto a reta e distância entre duas retas
2.6. Equação vetorial, equações paramétricas e equação geral de um plano no espaço cartesiano
2.7. Vetor normal a um plano
2.8. Determinação da intersecção de reta com plano e intersecção de dois planos
2.9. Ângulo entre uma reta e um plano e ângulo entre dois planos
2.10. Posições relativas entre reta e plano e posições relativas entre dois planos
2.11. Distância de ponto a plano, distância entre reta e plano e distância entre dois planos
3. Curvas e Superfícies
3.1. Curvas cônicas: a circunferência, a elipse, a parábola e a hipérbole vistas como seções cônicas
3.2. A circunferência, a elipse, a parábola e a hipérbole definidas como lugares geométricos no plano e seus elementos
3.3. Dedução das equações cartesianas reduzidas da circunferência, da elipse, da parábola e da hipérbole
3.4. Identificação de curva cônica por meio de completamento de quadrados (translação de sistema de coordenadas)
3.5. Definições geométricas de superfícies cilíndricas, superfícies cônicas e superfícies esféricas e superfícies de revolução
3.6. Superfícies quádricas
3.7. Equações reduzidas das seguintes superfícies quádricas: cilindro e cone quádricos; esfera e elipsóide; hiperbolóides de uma e de duas folhas; parabolóides elíptico e hiperbólico
3.8. Identificação de superfícies quádricas de revolução.
METODOLOGIA
A disciplina será ministrada através de aulas expositivas, com apresentação da matéria e de exemplos e resolução de exercícios. Serão utilizados quadro e projetor para as aulas. Listas de exercícios e notas de aula disponibilizadas via MOODLE.
Também foram agendados horários de atendimento:
-Segundas, das 15h30 às 16h30.
-Quintas, das 13h30 às 14h30.
O local dos atendimentos é a sala 1F149.
AVALIAÇÃO
Ao todo serão três (3) provas dissertativas:
Prova 1: 11/04/2022 - 33 pontos;
Prova 2: 16/05/2022 - 33 pontos;
Prova 3: 20/06/2022 - 34 pontos.
A soma das notas da avaliação será, portanto, de 100,0 pontos, que é o conceito máximo a ser obtido na disciplina. O horário de aplicação das provas será de 07h10 às 08h50. Como forma de recuperação, uma prova substitutiva, agendada para 27/06/2022, será aplicada. Tal prova substituirá o conceito da prova em que o aluno obteve menor resultado, sendo o conteúdo programática dessa avaliação o mesmo da prova regular em questão. Todas as provas devem ser realizadas de forma individual e presencial.
BIBLIOGRAFIA
Básica
1. BOULOS, P. Geometria analítica: um tratamento vetorial. 3. ed. São Paulo: Pearson Education, 2005.
2. STEINBRUCH, A.; WINTERLE, P. Geometria analítica. São Paulo: Pearson Makron Books,1987.
3. WINTERLE, P. Vetores e geometria analítica. 2. ed. São Paulo: Pearson Education, 2014.
Complementar
1. LIMA, E. L. Geometria analítica e álgebra linear. 2. ed. Rio de Janeiro: IMPA, 2006.
2. SANTOS, N. M., Vetores e matrizes: uma introdução à álgebra linear. Rio de Janeiro: Cengage Learning, 2007.
3. SILVA, V.; REIS, G. L. Geometria analítica. 2. ed. Rio de Janeiro: LTC, 1996.
4. SMITH, P. F.; GALE, A. S.; NEELEY, J. H. Geometria analítica. Rio de Janeiro: Ao Livro Técnico, 1957.
5. ZÓZIMO, M. G. Curso de geometria analítica: com tratamento vetorial. Rio de Janeiro: Científica, 1969.
APROVAÇÃO
Aprovado em reunião do Colegiado realizada em: ____/____/______
Coordenação do Curso de Graduação: _________________________
Documento assinado eletronicamente por Fabio José Bertoloto, Professor(a) do Magistério Superior, em 08/03/2023, às 16:39, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015. |
A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 4321794 e o código CRC D32E6241. |
Referência: Processo nº 23117.002527/2023-61 | SEI nº 4321794 |